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ABSTRACT 

Ossiander and Wedemeyer (1973) presented a method for 

determining the minimal sample size necessary to detect a given 

level of pathogen prevalence in a population of fish. One 

difficu1ty~'with their approach occurs when samples larger than 

their minimums are screened, because their method mandates 

rejecting a population if even one disease carrier occurs in a 

sample of any size. Here Ossiander and Wedemeyer's approach is 

modified; the number of disease carriers necessary to reject the 

population (the rejection number) is computed for fixed sample 

sizes. Tables of rejection numbers for different population 

sizes, sample sizes, and levels of risk are presented as well. 

KEY WORDS: disease, sampling, pathology, rejection number. 

INTRODUCTION 

The State of Alaska is currently preparing new regulations to 

ensure that fish are not transported or transplanted within the 

state without reasonable assurance that they do not harbor high 

levels of pathogens. One of the regulatory goals is to prevent 

fish diseases from causing problems in hatchery fish as well as 

their transmittal to natural populations. These regulations will 

also ensure that fish transferred to a hatchery will not 

jeopardize the health of fish stocks in the facility. Thus many 

populations will have to be screened to ensure that they do not 

harbor pathogens at a level above an acceptable threshold. 

Acceptable threshold levels for pathogens are established based 

upon the seriousness of a particular disease, the disease history 

of the receiving and donor populations of fish, and the economic 

value of susceptible natural populations. For every situation, 

however, there is a single sampling problem: determination of 



the minimal sample size for ensuring that the risk of not detecting 

a pathogen is acceptably low. Testing for presence of pathogens 

requires destructive sampling; because the production and 

transfer of fish involves great expense, it is imperative that 

sample numbers are minimally sufficient to detect a given 

prevalence of pathogens with a reasonable degree of certainty. 

The sample-size tables used in North America for disease 

screening (Piper et al. 1982, 292) are based on work by Ossiander 

and Wedemeyer (1973). Using a straightforward model 

for the probability distribution associated with sampling fish, 

these authors developed a table of the minimal sample sizes 

necessary to detect pathogens for various levels of pathogen 

prevalence. 

The following hypothetical example will illustrate the use of 

Ossiander and Wedemeyer's tables. Suppose that the highest 

acceptable level of prevalence of a particular pathogen in a 

population of juvenile salmon is lo%, there are 100,000 fry in 

the population, and an acceptable risk of making a wrong 

decision about whether or not this population meets the 

criteria for safe stocking is 5%. According to Ossiander and 

Wedemeyer, if 27 fish are randomly sampled from this 

population and if none of these is a carrier of the pathogen, 

then the risk that the population contains 10% or more pathogen 

carriers will be 5% or less; and this population would be 

acceptable. If one fish were positive, then the population would 

be rejected. 

Ossiander and Wedemeyer provided a useful way of balancing two 

key concerns: (1) the sample must be large enough to detect 

disease if it is present at a critical level and (2) small enough 

to avoid the destruction of an undue number of valuable fish. A 

difficulty with their approach can arise, however, when the 

number of fish actually sampled is greater than the minimal 

sample size given in their tables. This occurs because large 



samples are likely to contain a few disease carriers even if 

the path0ge.n prevalence is very low. To illustrate this, suppose 

that the sample in the above example contains 50 fish, and one 

individual is found to be a carrier of the pathogen. Ossiander 

and Wedemeyer state that if one out of exactly 27 fish is a 

carrier the population should be rejected; however, they do not 

discuss w h ~ t  the decision should he if the sample size is greater 

than 27. In this example, 2% of the sample has been shown to 

carry the disease. This amount is much less than the highest 

acceptable pathogen prevalence of lo%, but there is no certainty 

that the proportion of disease carriers in the population is less 

than 10%. The purpose of the present report is to show how 

Ossiander and Wedemeyer's approach can he extended so that 

decisions about transferring or culturing fish populations on the 

basis of pathogen prevalence can be made in cases where the 

sample size may be larger than the Ossiander and Wedemeyer 

minimum. 

MATERIALS AND METHODS 

Computation of the Rejection Number 

Basic Definitions and Assumptions: 

Most situations concerning fish disease screening include (1) a 

population comprising some known number of fish and (2) an 

unknown level of pathogen prevalence; i.e., the fraction of fish 

in the population that carries the pathogen. It is assumed that 

a number of individuals can be chosen from the population at 

random. Furthermore, it is assumed each individual in the sample 

can be tested for the presence or absence of the pathogen and the 

test results are always correct. Finally, it is assumed that it 

is not necessary to combine individual fish in order to complete 

these laboratory tests. Given these assumptions, the decision 

procedure will be as follows: each individual fish in the sample 



will be tested for the pathogen in the laboratory; there will be 

some number.of fish found to be carriers; if this number is equal 

to or greater than a predetermined rejection number, the 

population will be rejected and the proposed transfer or stocking 

will not be approved; otherwise, the population will not be 

rejected. 

The computation of rejection numbers depends upon several 

factors: (1) the number of fish in the population, (2) the 

number of fish in the sample, (3) the maximum acceptable pathogen 

prevalence, and (4) the acceptable level of risk. The risk level 

is defined as the probability that a population with a pathogen 

prevalence beyond the highest acceptable level is not rejected. 

Table 1 p-rovides variable names and definitions for these factors 

and for others. 

Ossiander and Wedemeyer's Model: 

The problem of "how large a sample to take in order to detect a 

given incidence of . . . carrier fish in the population" was 
considered by Ossiander and Wedemeyer (1983). They fixed the 

rejection number at J=l; and for fixed N, p, and r, they asked 

what n must equal so that the probability of finding one or more 

carriers in the sample would be less than or equal to r (Table 1). 

According to their model, tables of sample sizes are derived from 

a straightforward consideration of random sampling without 

replacement. If a population of fish (N) includes pathogen 

carriers (M), the probability that the first fish selected for 

the sample will not be a carrier is (N-M)/N; if that occurs, the 

probability that the second fish sampled will also not be a 

carrier is (N-M-l)/(N-1). The second formula is valid because 

once the first fish has been selected, the population size is 

reduced to N-1 fish; and since the first fish was not a carrier, 

the number of noncarriers remaining is N-M-1. 



Table 1. Variable names used in the text. 

Variable Meaning 
name 

N Number of fish in the whole population 

M Number of carriers in the population 

n Number of fish in the sample 

Highest acceptable pathogen prevalence 

Risk level 

J Rejection number 

Number of carriers in the sample 

Standard deviation of the number of carriers in 

the sample 

Critical value (one-sided) from a table of the 

normal distribution 



Finally, the probability that both of the first two fish are 

noncarriers is the product of these two quantities, or 

[(N-M)/N]x[(N-M-1)/(N-I)]. 

As additional fish are randomly sampled from the population, 

this process can be extended. The probability that the k th 

fish is a honcarrier equals (N-M-k+l)/(N-k+l) , and the 
probability that a22 k fish are noncarriers will be 

Ossiander and Wedemeyer (1973) computed their sample-size 

tables by repeatedly incremepting the sample size until the 

product above became less than or equal to r. The number of 

terms in the product is, therefore, the sample size necessary to 

detect a given prevalence of pathogens at the chosen risk level. 

Extension to Rejection Numbers Greater Than One: 

The concept of a rejection number is an extension of Ossiander 

and Wedemeyer's approach to disease screening. For a given N, 

M, p, r, and n, we can compute a rejection number (J). If the 

number of carriers in the sample (C) is equal to or greater than 

J, the population is rejected. The computation of J is a straight- 

forward extension of the previously described model. In general, 

sampling without replacement is modelled with the hypergeometric 

probability distribution. Ossiander and Wedemeyer's model is the 

hypergeometric distribution: J is fixed and equal to one (1) and 

n is allowed to vary. In contrast, to compute the rejection number 

for a given sample size, n is fixed and J is allowed to vary. 

The hypergeometric distribution provides a formula for the 

probability that C will equal a given value when n is randomly 

drawn without replacement from N that includes M; e.g., the 



probability that C=O (written as Pr[C=O]) is given by the 

formula: 

Formulas for Pr[C=l], Pr[C=k], etc., require more complex 

notations h d  will not be reproduced here. The general formula 

for the hypergeometric distribution can be found in many 

textbooks (Johnson and Kotz 1969; Cochran 1977). The main 

concept here is the ability to compute Pr[C=Ol, Pr[C=lI, 

Pr [C=2] , . . . , Pr [C=min (n,M) 1 . Probabilities for all 

possible values of C can be computed, and C can range from zero 

to the smaller of n and M. 

To find the rejection number (J), we must first specify N, MI and 

n; e.g., let N=100,000 and determine M from p. If p=10%, then M 

will equal 10% x 100,000 = 10,000. Finally, if n=50 then the 

given values of N, MI and n can be used to compute hypergeometric 

probabilities with the aid of a computer. The first few are as 

follows: 

These numbers can now be applied to disease screening. If an 

acceptable risk level is r=5% (.05), a population will be 

acceptable for transfer or stocking only if the probability of 

finding C in the sample is less than 0.05. For this specific 

example, the probability of finding C=O in the sample is .005, 

much less than the acceptable risk level; therefore, the 

population would be accepted. 

Now suppose that exactly one carrier was found in the sample; the 

probability of this outcome is .029. In considering the risk of 

making a wrong decision, however, it is the probability of finding 



C or fewer carriers that is meaningful; i .e., Pr [C=O] + Pr [C=l] = 

.005 + ,029. = .034. This cumulative probability is still less 

than 5%; so if one carrier was found in a sample of 50 fish, the 

population would be accepted under the established criteria. This 

answers the question posed in the hypothetical example provided 

in the introduction of this report. 

Finally, suppose that two carriers were found in the sample. 

The cumulative probability that C is less than or equal to two 

is 0.112, as can be seen from summing the above probabilities. 

This number is greater than the 5% risk level; therefore, the 

population would be rejected for transfer or stocking. Thus 

the rejection number is J=2; i.e., the population will be 

rejected..if the sample has two or more carriers. A similar 

procedure could be followed to compute rejection numbers for 

any given values of N, p (from which we can compute M), n, and 

r. 

Approximations to the Hypergeometric Distribution: 

Binomial Distribution. Even with the aid of a computer 

program, the computation of rejection numbers using the 

hypergeometric distribution can be time-consuming. As the 

population size increases, the hypergeometric distribution will 

be closely approximated by the binomial distribution. As the 

sample size increases, either the Poisson or the normal 

distribution will provide a good approximation to the binomial. 

These approximations are discussed in detail by Johnson and 

Kotz (1969) ; i.e., guidelines for applying these well known 

approximations to computing rejection numbers. 

First, consider a population of 1,000 fish, highest acceptable 

pathogen prevalence of 20%, and a risk level of 1%; the sample 

size is 200. With the given parameters, the rejection number 



computes to 29. If the population size is increased to 5,000 

and all other parameters remain the same, the rejection number 

decreases by 1 to 28. At a population of 10,000, the rejection 

number becomes 27; and it will never be smaller than this, no 

matter how large the population becomes. 

This value',(27) can also be computed using the binomial 

distribution instead of the hypergeometric distribution. The 

binomial distribution has sample size and pathogen prevalence as 

parameters, but the population size is not included in the proba- 

bility formulas. Mathematically as the population size becomes 

larger and larger, the binomial distribution gives the same 

rejection number as the hypergeometric distribution. Of course, 

the popul-ation can never really contain an infinite number of 

fish, so this really means that the binomial distribution will 

give the right answer whenever the population is bigger than some 

number. For the hypothetical example used here, the binomial 

distribution will give the right answer if the population is 

greater than 10,000. Even for a population as small as 1,000 

individuals, the binomial approximation (27) is close to the 

rejection number computed using the hypergeometric distribution 

( 2 9 ) .  

Johnson and Kotz (1969) suggest that the binomial distribution is 

an adequate approximation to the hypergeometric whenever 

n < N/10. For the ranges of parameters commonly encountered in 

disease-screening work, following this rule will qive rejection 

numbers in error by, at most, one fish. Since it is often easier 

to compute binomial probabilities than hypergeometric ones, this 

rule should save time in computing tables of rejection numbers. 

Normal ~istribution. Where the binomial distribution provides an 

appropriate approximation to the hypergeometric (i.e., when 

n < N/10) and where n > 100 and p > 0.1), rejection numbers may 

be even more rapidly computed using the normal distribution. The 

expected number of carriers in the sample must first be computed 

as np and the variance of the number of carriers as 

-9- 



np(1-p). The square root of the variance is the standard 

deviation of the number of carriers (s). The rejection number is 

computed as np - zs, where z is the appropriate value from a 
table of the cumulative normal distribution for the chosen risk 

level. In tables giving values for one- and two-sided tests, the 

values should be taken from the column for one-sided tests (e.g., 

10% risk, 2-1.282; 5% risk, z=1.645; 1% risk, z=2.326). 

As an example of applying the normal approximation, assume 

p=0.20, n=100, and r=0.05. Then s = the square root of 

(100) (0.2) (0.8) = 4, and J = (100) (0.2) - (1.645) (4) = 13.4. 

Since J must be a whole number, we take the next whole number 

bigger than this, so J=14. This is the same value computed 

using the hypergeometric distribution (for N=10,000), and it is 

much easier to compute. 

RESULTS 

The Rejection Number Tables 

Explanation: 

Tables 2, 3, and 4 contain rejection numbers for different 

values of risk, population size, carrier rate, and sample size. 

These tables were computed using a program written in Turbo 

pascal" for the IBM/PC@ microcomputer. The hypergeometric 

distribution was used for all finite population sizes, and the 

binomial distribution'was used for the infinite population. 

8 
Mention of commercial products or trade names does not 

constitute endorsement by ADF&G, FRED Division. 



T a b l e  2 .  R e j e c t i o n  numbers f o r  d i f f e r e n t  p o p u l a t i o n  and sample  s i z e s  when 
t h e  r i s k  l e v e l  i s  10%. 

P o p u l a t i o n  S i z e  = 1,000 

Sample S i z e  
Pa thogen  
p r e v a l e n c e  30 60 100 120 200 300 5 00 

0.20 3 8 15 19 34 5 3 9 2 
0.10 1 3 6 8 15 24 4 4 
0.05 1 2 3 7 11 2 1 
0.01 1 3 

P o p u l a t i o n  S i z e  = 5,000 

Sample S i z e  
Pa thogen  -- 

p r e v a l e n c e  30 60 100 120 200 300 500 

P o p u l a t i o n  S i z e  = 10,000 

Sample S i z e  
Pa thogen  
p r e v a l e n c e  30 60 100 120 200 300 500 

P o p u l a t i o n  S i z e  = i n f i n i t e  

Sample S i z e  
Pa thogen  
p r e v a l e n c e  30 6 0 100 120 200 300 500 



T a b l e  3. R e j e c t i o n  numbers f o r  d i f f e r e n t  p o p u l a t i o n  and sample  s i z e s  when 
t h e  r i s k  l e v e l  i s  5%. 

P o p u l a t i o n  S i z e  = 1,000 

Pa thogen  
Sample S i z e  

p r e v a l e n c e  30 60 100 120 200 300 500 

P o p u l a t i o n  S i z e  = 5,000 

Pa thogen  -- 
Sample S i z e  

p r e v a l e n c e  30 60 100 120 200 300 500 

P o p u l a t i o n  S i z e  = 10,000 

Pa thogen  
Sample S i z e  

p r e v a l e n c e  3 0 60 100 120 200 300 500 

P o p u l a t i o n  S i z e  = i n f i n i t e  

Sample S i z e  
Pa thogen  
p r e v a l e n c e  3 0 6 0 100 120 200 300 500 



T a b l e  4 .  R e j e c t i o n  numbers f o r  d i f f e r e n t  p o p u l a t i o n  and sample  s i z e s  when 
t h e  r i s k  l e v e l  i s  1%. 

P o p u l a t i o n  S i z e  = 1,000 

Pa thogen  
Sample S i z e  

p r e v a l e n c e  30 60 100 120 200 300 500 

P o p u l a t i o n  S i z e  = 5,000 

Sample S i z e  
Pa thogen  -- 

p r e v a l e n c e  30 6 0 100 120 200 300 500 

P o p u l a t i o n  S i z e  = 10,000 

Pa thogen  
Sample S i z e  

p r e v a l e n c e  30 60 100 120 200 300 500 

P o p u l a t i o n  S i z e  = i n f i n i t e  

Sample S i z e  
Pa thogen  
p r e v a l e n c e  30 6 0 100 120 200 300 500 



The application of these tables and subtables will depend on the 

acceptable xisk level and the size of the population under 

consideration, respectively. In the subtable, find the maximally 

acceptable carrier rate in the left-hand column and the sample 

size in the top row. The number at the intersection of the 

sample-size column and the carrier-rate row is the rejection 

number. I5 the number of carriers in the sample is greater than 

or equal to the rejection number, the proposed transfer or 

introduction will not be allowed. 

Notice that there is very little change in the tables between a 

population size of 1,000 and an infinite population. This 

indicates that the binomial approximation to the hypergeometric 

distribution is appropriate for most of the situations 

encountered in fish disease screening work. 

DISCUSSION 

This report provides an extension of the tables provided by 

Ossiander and Wedemeyer (1973) for screening fish populations for 

disease. The present approach is appropriate when it is 

important to ensure that pathogen prevalence in a population is 

below some predetermined level. While Ossiander and Wedemeyer's 

approach mandates that populations be rejected for transfer or 

stocking if any pathogen carriers are found in a sample, the 

approach presented here uses a rejection number. A population is 

rejected only if the sample contains a number of disease carriers 

equal to or greater than the rejection number, which may be 

greater than one. 

The approach to disease screening presented here relies upon 

several assumptions: (1) fish can be randomly sampled, (2) the 

laboratory test for pathogen presence is 100% accurate, and (3) 

sample fish do not have to be pooled in the laboratory. If the 



assumptions cannot be met, these methods should be modified. 

Worlund and.Taylor (1983) discuss estimating the rate of disease 

incidence when the last of these assumptions is relaxed. 

The rejection number can be computed for any given values of 

population size, sample size, pathogen prevalence, and risk 

level. The exact computation using the hypergeometric 

distribution is time-consuming; however, the normal approximation 

discussed in this report is applicable to many situations 

encountered in fish-disease screening (see guidelines above). 

With this approximation, rejection numbers can be computed using 

only a hand calculator. 

In summary, this report presents a way of determining whether the 

level of pathogen prevalence in a population of fish is at or 

below some threshold level. This approach is appropriate in 

situations where a small level of pathogen prevalence is 

acceptable, as long as there is assurance that this level is 

below a previously determined threshold. If it is not 

acceptable to transfer or culture a population of fish with any 

evidence of pathogen carriers, Ossiander and Wedemeyer's (1973) 

approach to disease screening should be followed. 
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